The GERDA Neutrinoless double beta decay experiment

Stefan Schönert, MPIK Heidelberg

Workshop on Precision Measurements at Low Energy January 18th & 19th 2007 Paul Scherrer Institut, Villigen, Switzerland

Outline

- Introduction:
 - $0-\nu\beta\beta$ and physics implications
 - Effective Majorana neutrino mass <m>
 - Predictions on <m> from oscillation experiments
 - Sensitivity with and w/o backgrounds
- GERDA design
 - Concept
 - Sensitivities: Phase I, II, III
 - Locations at LNGS
 - Phase I detectors
 - Phase II detectors
 - Front-end electronics
 - Infrastructures: cryogenic tank, WT, clean room,...
 - Screening
- Examples of backgrounds and reduction techniques:
 - Detector segmentation
 - Liquid argon scintillation read out
- Conclusion/Outlook

2ν-ββ Decay

Mass parabolas

Ground states of even-even nuclei: 0+

0ν-ββ Decay

Physics motivations

1) Dirac vs. Majorana particle: (i.e. its own anti-particle)?

 $0\nu\beta\beta \Rightarrow$ Majorana nature

For $m_3 \sim (\Delta m_{atm}^2)^{1/2}$, $m_D \sim m_t \rightarrow M_R \sim 10^{15} \text{GeV}$

Majorana \Rightarrow CP violation in $M_{\rm R}$ \rightarrow higgs + lepton \Rightarrow Leptogenesis \Rightarrow **B** asymmetry

2) Absolute mass scale:

Hierarchy: degenerate, inverted or normal (effective) neutrino mass

Assume leading term is exchange of light Majorana neutrinos

$$T_{1/2} (0v)^{-1} = G M^2 m_{ee}^2 \text{Effective neutrino mass}$$
Phase space Nuclear matrix element
S. Schoenert, MPIK Heidelberg – Workshop on Precision Measurements at Low Energy, PSI, January 18/19 2007

Effective Majorana mass

$m_{ee} = |\sum_i U_{ei}^2 m_i|$

 U_{ei} complex: ⇒ sensitive to CP phases (optimist③) ⇒ cancellation possible (pessimist)

NB: Beta-endpoint (Katrin)
$$\mathbf{m}_{v_e} = \left(\sum_i |U_{ei}^2| \mathbf{m}_i^2 \right)^{1/2}$$

$$\begin{split} m_{\beta\beta} &= |U_{e1}|^2 \, m_1 + |U_{e2}|^2 \, e^{2i\lambda_{21}} \, m_2 + |U_{e3}|^2 \, e^{2i(\lambda_{31} - \delta)} \, m_3 \\ &= |U_{e1}|^2 \, m_1 + |U_{e2}|^2 \, e^{i\alpha_{21}} \, m_2 + |U_{e3}|^2 \, e^{i\alpha_{31}} \, m_3 \end{split}$$

If CP is conserved:

$$\begin{split} m_{\beta\beta} &= |U_{e1}|^2 \, m_1 + |U_{e2}|^2 \, e^{2i\lambda_{21}} \, m_2 + |U_{e3}|^2 \, e^{2i(\lambda_{31} - \delta)} \, m_3 \\ &= |U_{e1}|^2 \, m_1 + |U_{e2}|^2 \, e^{i\alpha_{21}} \, m_2 + |U_{e3}|^2 \, e^{i\alpha_{31}} \, m_3 \end{split}$$

$$\begin{split} m_{\beta\beta} &= |U_{e1}|^2 \, m_1 + |U_{e2}|^2 \, e^{2i\lambda_{21}} \, m_2 + |U_{e3}|^2 \, e^{2i(\lambda_{31} - \delta)} \, m_3 \\ &= |U_{e1}|^2 \, m_1 + |U_{e2}|^2 \, e^{i\alpha_{21}} \, m_2 + |U_{e3}|^2 \, e^{i\alpha_{31}} \, m_3 \end{split}$$

Solar/Reactor -v: θ_{12} , Δm_{sol}^2 Atmosph.-v: Δm_{atm}^2

Reaktor-v: θ_{13}

 $m_{ee} = \left[\cos^2\theta_{13} \left(m_1 \cos^2\theta_{12} + m_2 e^{2i\alpha} \sin^2\theta_{12}\right) + m_3 e^{2i\beta} \sin^2\theta_{13}\right]$ \Rightarrow m_{ee} = f(m₁, Δ m²_{sol}, Δ m²_{atm}, θ_{12} , θ_{13} , α , β) S. Schoenert, MPIK Heidelberg – Workshop on Precision Measurements at Low Energy, PSI, January 18/19 2007

Predictions from oscillation experiments

Claim for evidence for $\beta\beta(0\nu)$

H.V. Klapdor-Kleingrothaus, A. Dietz, I.V. Krivosheina, O. Chkvorets, NIM A 522 (2004) (subgroup of Heidelberg-Moscow Collaboration)

Fig. 17. The total sum spectrum of all five detectors (in total 10.96 kg enriched in ⁷⁶Ge), for the period November 1990–May 2003 (71.7 kg year) in the range 2000–2060 keV and its fit (see Section 3.2).

Heidelberg-Moscow data: •Nov 1990- May 2003 •71.7 kg year •Bgd 0.11 / (kg y keV)

•28.75 ± 6.87 events (bgd:~60) •4.2 sigma evidence for $0\nu\beta\beta$

•0.69-4.18 x10²⁵ y (3 sigma) •Best fit 1.19 x10²⁵ y

•m_{ee} = 0.24-0.58 eV •best fit 0.44 eV

NB. Statistical significance depends on background model!

Experimental sensitivity: w/o background

Background free limit:

0 cnts in the analysis energy window \Rightarrow Poisson upper limit: N_P

Remember:
$$\left[T_{\frac{1}{2}}^{0\nu}(0^+ \rightarrow 0^+)\right]^{-1} = G^{0\nu}(E_0, Z) \left| M_{GT}^{0\nu} - \frac{g_F^2}{g_A^2} M_F^{0\nu} \right|^2 < m_\nu > 2$$

 $\tau \geq \frac{N_N T}{N_P} \propto M \cdot T \implies < m_P \leq \frac{\text{const}}{(M T)^{1/2}}$

If no decay is observed in presence of N_B background events in an energy window ΔE :

Comparison of DBD Isotopes

$T_{1/2}^{0\nu} = \frac{1}{\Gamma(Q^{5}_{\beta\beta})}$	$\frac{1}{M^2} < m_{ee}^2$, GE	RDA, Ma	aiorana		
$N = N = \frac{mass \cdot t}{1} \cdot \ln 2 \cdot \Gamma M^2 \cdot \Gamma M^2$						
$IV_{sig} = IV_{Avg} \cdot - Avg$		$m \sim m_{ee} >$				
isotope	Q _{ββ}	nat. abund.	rel. A	rel Γ	rel. M ²	N _{siq}
⁷⁶ Ge → ⁷⁶ Se	2039 keV	7.4%	1	1	1	2.4
⁸² Se → ⁸² Kr	2995 keV	9.2%	0.93	4.4	0.71	7.0
$^{100}Mo \rightarrow ^{100}Ru$	3034 keV	9.6%	0.76	7.2	0.23	3.0
$^{130}\mathrm{Te} \rightarrow ^{130}\mathrm{Xe}$	2529 keV	34%	0.58	6.9	0.33	3.2
136 Xe \rightarrow 136 Ba	2479 keV	8.9%	0.56	7.4	0.15	1.5
for 1000 kg y, <m<sub>ee> = 50 meV, M² from V.A.Rodin et al, Nucl. Phys. A766 (2006) 107.</m<sub>						
NEMO3						

Super-Nemo

Cuoricino/Cuore EXO

- Introduction:
 - $0-\nu\beta\beta$ and physics implications
 - Effective Majorana neutrino mass <m>
 - Predictions on <m> from oscillation experiments
 - Sensitivity with and w/o backgrounds
 - Claim of KK et al. (HdM Data)
- GERDA design
 - Concept
 - Sensitivities: Phase I, II, III
 - Locations at LNGS
 - Phase I detectors
 - Phase II detectors
 - Front-end electronics
 - Infrastructures: cryogenic tank, WT, clean room,...
 - Screening
- Examples of backgrounds and reduction techniques:
 - Muon veto
 - Detector segmentation
 - Liquid argon scintillation read out
- Conclusion/Outlook

Two new ⁷⁶Ge Projects:

List of institutions:

INFN LNGS, Assergi, Italy JINR Dubna, Russia Institute for Reference Materials, Geel, Belgium MPIK, Heidelberg, Germany Univ. Köln, Germany Jagiellonian University, Krakow, Poland Univ. di Milano Bicocca e INFN. Milano. Italv INR, Moscow, Russia ITEP Physics, Moscow, Russia Kurchatov Institute, Moscow, Russia MPI Physik, München, Germany Univ. di Padova e INFN, Padova, Italy Univ. Tübingen, Germany

Array(s) of ^{enr}Ge housed in high-purity electroformed copper cryostat
Shield: electroformed copper / lead
Staged approach based on 60 kg arrays (60/120/180 kg)

iss range d exp. techniques

~80 physicists, 13 institutions, 5 countries
•approved Nov 2004 at <u>LNGS</u>
•Status: under construction

Phases and Physics reach of GERDA

Background requirement for GERDA:

⇒Background reduction by factor $10^2 - 10^3$ required w.r. to precursor exps. ⇒Degenerate mass scale $O(10^2 \text{ kg-y}) \Rightarrow$ Inverted mass scale $O(10^3 \text{ kg-y})$

Phases and Physics reach of GERDA

GERDA at LNGS

GERDA design

GERDA underground facilities at LNGS

Main Experimental Site

Cryostat

- •Vacuum insulated stainless steel cryostat with internal Cu liner (stainless steel factor ~100 more radioactive (²³⁸U, ²³²Th) than Cu)
- •Ø outer×height 4200×8900 [mm×mm]
- •inner vessel volume 70 [m3]
- •empty vessel 25,000 [kg]
- •max. load inner vessel:
 - •LAr 98,000 [kg]
 - •Cu shield 20,000 [kg]

on Precision Measurements at Low Energy, PSI, January 18/19 2007

Infrastructure on Top of Platform Lock with tubes for cabels

Clean room with lock on platform

Rail system to lower position and lower individual strings

Phase I Detectors:

GERMaintenance and Measurements in Undergrond detector Iaboratory (LArGe facility)

Since Nov. 2005: 17.9 kg of enriched Ge-detectors underground at LNGS; Characterization completed

Phase I Detectors:

GERDA rototype tests of (natural) low-mass detector assembly in liquid nitrogen

Enriched detectors are currently re-processed and prepared for testing

elberg – Workshop on Precision Measurements at Low Energy, PSI, January 18/19 2007

Phase II Detectors: Procurement of enriched Ge

•Enrichment of 37.5 kg Ge-76 completed in Sep.05

•Transportation of Material to Europe by truck in spring for further processing

•Specially designed protective steel container reduces activation by cosmic rays by factor 20

Test transportation March 05

Phase II Detectors: "True-coaxial" natural detectors

•6–fold–φ segmented
p-type
•18–fold (6-φ; 3-z)
segmented n-type

18-fold segmented detector (in standard cryostat)

Backgrounds in GERDA

derived from measurements and MC simulations

Target for phase II: $\Sigma B \le 10^{-3}$ cts/(keV kg y) S. Schoenert, MPIK Heidelberg – Workshop on Precision Measurements at Low Energy, PSI, January 18/19 2007

- Muon veto
- Anti-coincidence between detectors
- Segmentation of readou (Phase II)
- Pulse shape analysis (F
- Coincidence in decay cł
- Scintillation light detection

- Muon veto
- Anti-coincidence between detectors
- Segmentation of readout electrodes (Phase II)
- Pulse shape analysis (Phase I+II)
- Coincidence in decay chain (Ge-68)
- Scintillation light detection (LArGe)

Example: Internal ⁶⁰Co

Example of background topology

⁶⁰Co background spectrum

⁶⁰Co: suppression by segmentation

⁶⁰Co: suppression by segmentation

MaGe: ⁶⁰Co suppression by segmentation and anti-coincidence

Number of crystals

Phase II detectors

1.6 kg 18-fold segmented true-coaxial n-type

<u>Goal:</u>

•Study of γ identification and suppression factors at $Q_{\beta\beta}$: 2 -100 depending on source location

S. Schoenert, MPIK Heidelberg – Workshop on Precision Measurements at Low Energy, PSI, January 18/19 2007

²³²Th suppression by LAr Ge-anticoinc: (20 cm diameter prototype setup)

Suppression limited by size of Dewar (20 cm Ø)

1 ton liquid argon detector under construction

⁶⁰Co: segmentation and LAr Ge-anticoinc

shop on Precision Measurements at Low Energy, PSI, January 18/19 2007

2.5

3

Off-spin of GERDA LAr R&D for DM search

Pulse shape discrimination studies

Summary & Outlook

•GERDA: probe Majorana nature of neutrino with sensitivity down to inverse mass hierarchy scale

phase I : background 0.01 cts / (kg · keV · y)

scrutinize KKDC result within 1 year

phase II : background 0.001 cts / (kg · keV · y)

► $T_{1/2} > 2 \cdot 10^{26} \text{ y}$, $< m_{ee} > < 0.09 - 0.29 \text{ eV}$

phase III : world wide collaboration

► $T_{1/2} > \sim 10^{28} \text{ y}$, $< m_{ee} > \sim 10 \text{ meV}$

•2007: Experimental installations (Cryotank, water tank, building etc.)•2008: target for detector readiness

GERDA collaboration

