Particle and Astrophysics: The neutrons perspective

Examples on why to use neutrons

Stephan Paul

Physik Department TUM

Overview

- The first 3 minutes of the Universe (in a nutshell)
- Weak interaction properties of hadrons
 - Neutron lifetime measurement
- Flavour diagonal CP-violation
 - EDM of the neutron
- Nature and the search for right-handed partners
 - Neutron bound β -decay
- Toolbox: Ultracold neutrons
 - Sources with D₂ converter
 - Sources with superfluid helium
- Summary

۲

History of the Universe

10⁻⁴³ seconds:

The curtain is being lifted...

Space and time are foamlike....

Superstrings: a 'Weltformel'?

- All forces are unified
- The world is 10-dimensional
- However, only 4 dimensions have participated in the expansion of space All other dimensions are curled up

$10^{-35} - 10^{-32}$ s:

Inflation:

within 10⁻³² seconds space expands by a factor 10⁵⁰

- Quantum-fluctuations in the energy density are being amplified
 (3)
- The build the base for future galaxy formation

A tiny excess of matter over antimatter is created

We are made from the 1 in the ninth decimal

Until 10⁻¹⁰ seconds:

Soup from elementary particles and exchange bosons constantly interacting

Thereby cooling off by spatial expansion and modification of coupling strength

10⁻¹⁰-10⁻⁶ seconds: Electroweak symmetry breaking

Neutrinos decouple: Weak interaction is becoming too weak, neutrinos stop exchanging energy and momentum with other particles

10^{-2} - 10^{-3} seconds:

Primordial nucleosynthesis

e

10⁵ years: Creation of atoms Decoupling of photons

From 10⁹ years on: Creation of stars and galaxies

Neutron decay and BB-Nucleosynthesis

- < 1 second after Bing Bang:</p>
 - Electroweak process: g_{V} , g_A
 - proton/neutron = 6:1, freeze out at $kT \sim \Delta m_{pn}$
- > 1second after Big Bang:
 - proton/neutron changes by n-decay to 7:1
- 100 seconds (kT = 0.1 MeV)
 - Deuteron formation
- Helium formation

$$d + n \longrightarrow H^{3} + \gamma \qquad d + d \longrightarrow He^{4} + \gamma$$

$$H^{3} + p \longrightarrow He^{4} + \gamma \qquad d + d \longrightarrow H^{3} + p$$

$$d + p \longrightarrow He^{3} + \gamma \qquad H^{3} + d \longrightarrow He^{4} + n$$

$$He^{3} + n \longrightarrow He^{4} + \gamma \qquad He^{3} + d \longrightarrow He^{4} + p$$

 $+ d \rightarrow He^4 + \gamma$

Neutron lifetime and Cosmology

- Three parameters:
 - $\eta_{10} = (n_B / n_\gamma) * 10^{10}$ • WMAP
 - $Y_p = He / p$
 - Metal-poor stars/galaxies
 - τ_n – Evporim

- Experiments
 Using standard weak/nuclear
- physics codes
 - Deuteron abundance (small)
 - Helium abundance
 - Lithium abundance (small)

Primordial Nucleosynthesis

Element generation as function of time

Current status of results

- Lifetime τ : $\tau_n \propto \frac{1}{g_V^2 (1+3\lambda^2)}$ with $\lambda \coloneqq \frac{g_A}{g_V}$
- Current type of Experiments
 - In beam experiments count decays in fiducial volume
 - Storage experiments count decays after a preset storage time t
 - Storage losses
 - Loss of time information
- Present values

 $\lambda = -1.2695 \pm 0.0029$ $\tau_n = 885.7 \pm 0.8 s$

Measurement of the Lifetime

A new lifetime experiment

- High statistics (large volume)
- Minimize systematic effects
 - No wall losses (no material walls)
 - Detection of surviving n after storage time t
 - Online detection of decay-protons

Detect defects

- Depolarized neutrons
- Vary spring tension

Magnetic bottle for UCN

$$\mathbf{F} = -\nabla(\mathbf{\mu} \cdot \mathbf{B})$$

$$- \mu_n = -60.3 \text{ neV/T}$$

$$- B_{max} = 2$$

– attraction for
$$\mu$$
 B

Experimental setup

Proton detection

Proton trajectories

Magnetic multipole $B_{eff} \sim 2T$

PSI Workshop

Design

Assume: new high-density UCN source (FRMII, PSI)

- UCN (gas-) density: $r = 10^3 - 10^4 \text{ cm}^{-3}$

- $B_{max} = 2 T B_{min} = 10-3 T$
- Volume: 700 l
- N_{stored} = 10⁷ -10⁸
- Statistical accuracy:
 - $\Delta t \sim 1s$ per measurement cycle (30 min):
 - $\Delta t \sim 0.1s$ in 2-4 days

CP-violation and EDM

EDM is a test for flavour diagonal CP

- Test of structure of vacuum at small distance scales
- Background free probe for 'new physics' (unlike CKM induced \mathcal{P})

CP violation in nucleons (neutron) needed for

- Baryogenesis problem (matter vs. antimatter in the universe)
 Cosmological requirement (Sakharov criteria)
 Inflationary scenario suggests dynamical generation of baryon number
- Test CP violating part in QCD (θ-term)
 Magically fine-tuned to zero

EDM can be studied in

- Diamagnetic atoms
- Paramagnetic atoms, molecules (\mathcal{P} inducing electron-EDM d_e)
- Neutron (P in quark sector)

Search for Electric Dipole Moments

Electric Dipole Moments and Physics

CP from particles to atoms (main connections)

How to measure an EDM

Measurement Accuracy

- Present limit: d_n<3·10⁻²⁶ e·cm
- Limitations for δd_n:
 - -# stored neutrons
 - New UCN source (e.g. FRMII)
 - -E-field strength
 - New material for storage bottle
 - -B-field stability (10fT)/uniformity (3pT/cm)
 - New magnetometry (³He)
 - shielding
 - -Systematic correlations
 - Field shapes, simulations

■ Aim: $d_n \stackrel{>}{\leftarrow} 10^{-27} e \cdot cm$ (first round limit) ■ Final aim: $d_n \stackrel{>}{\leftarrow} 10^{-28} e \cdot cm$

Competition

- Much efforts around the world with different approaches
 - Cryo-EDM at Grenoble (ILL) super-thermal ⁴He source with internal experiment
 - Lamoreaux/Golub in USA (NIST/LANL) super-thermal ⁴He, internal ³He magnetometer, n-detection... very ambitious and difficult)
 - EDM in Switzerland (PSI) (multi-cell system)
 - EDM at FRMII ($\delta B \sim 2ft$) ! (Mainz TUM Gatchina)
- All efforts aim at similar accuracy (d_n=10⁻²⁸ e·cm)
 - Different source techniques
 - Different magnetometry
 - Different systematic effects

Right Handed Neutrinos

- Observation of Neutrino oscillations requires neutrino mass
- Popular scenario:
 - light left-handed neutrinos
 - heavy right-handed neutrinos
 - Seesaw mechanism
- Implications on cosmology
 - Neutrino decay as source for Leptogenesis and CP violation
 - Candidate for dark matter particles

The Structure of Weak Interaction

- Standard (V-A) structure of weak interaction embedded in SU(2)_L
- Extensic

Helicity of Neutrinos*

- Right handed currents (left-right symmetric models) M. Goldhaber, L. Grodzins, and A. W. Sunyar
 - W_R, V_R Brookhaven National Laboratory, Upton, New York
 - Measure left-handedesseeficies/ber 11, 1957)
- Tensor or scalar forces

PSI Workshop

· OVe

Measurement Technique

Unpolarized n decay in magnetic field within reactor tube

$$\vec{p}(H) = -\vec{p}(\vec{v}_e) \text{ with } |\mathbf{E}_{kin}^{\mathrm{H}}| = 326.5 \text{ eV}$$
$$- , _{H} = \frac{\vec{\sigma} \cdot \vec{p}}{|\vec{\sigma}| \cdot |\vec{p}|} = 0,, _{V_e}$$

- Select F, m_F of emerging hydrogen atom using spin-filter method
- Identify hydrogen from n-decay via
 - Doppler shifted laser-ionisation process
 - Magnetic spectroscopy
- Rate: 0.3 H-atom/s in 2s-state
- Physics:
 - Relative rates of F=0,1, $m_F=0,1$ give signature for g_S and g_T
 - Rate of F=1, m_F = -1 shows (V+A)

Experimental setup

PSI Workshop

Experimental setup

Precision and Competition

Precision expected:

- Improvement on g_S upper limit: factor 10 in 2 days/ε (ε=efficiency)
 Present accuracy: |g_s/g_v|< 0.067^{*}
- Improvement on g_T upper limit: factor 20 in 2 days/ ε
 - Present accuracy: |g_T/g_A|<0.09*</p>
 - Improvement on \mathbb{P}_{v} : factor 100 in 30 days/ ε (statistically)
 - Present accuracy: 15% from μ,τ decays

Competition

- Neutron decay correlations
- Direct searches for W_R at LHC
- Muon and tau decay (Michel parameter) presently best limit

*Severijns et al. 2006: global fit w/o τ_n^{new}

Working Plan n Bound–_β-Decay

- Principle: Hydrogen spectroscopy at a reactor
- First stage (2007-2010):
 - Laboratory test A
 - Laser ionization of hydrogen with
 - Magnetic spectroscopy

- Measurement: Detect neutron bound β -decay (FRMII) I.
- Second stage:
 - Laboratory test B
 - Test spin-filter method
 - Need polarized H source (second spin filter ?)
 - II. Measurement of HFS population
 - Setup of high power IR laser (deexcite nS states with n > 3)
 - III. Measurement of HFS population related to \bigcirc_{v}

$$|E_{kin}^{H}| = 326.5 \text{ eV}$$

Production of Ultra Cold Neutrons

Superthermal sources

- Two systems are known for production of UCN (non-equilibrium cooling)
 - Solid deuterium
 - Upscattering processes < downscattering process</p>
 - At T~5K: $\sigma_{absorption} \sim \sigma_{upscattering}$
 - Mean free path of UCN in solid $D_2 \sim 10-15$ cm
 - Placement in cold beam w/wo premoderation
 - Position: close to n-source
 - Accumulation mode
 - Superfluid helium
 - No upscattering or absorption
 - Usable cold neutron flux for $\lambda \sim 8\text{\AA}$
 - Placement outside strong heat input
 - Typically used for internal experiments
 - Extraction recently demonstrated

Examples of UCN sources

Solid D₂- sources:

-LANL

- -TRIGA (Mainz)
 - Using TUM geometry/prototype: 100,000 UCN detected in one 'shot'
 - Upgrade in preparation
- -PSI (in preparation)
- -FRMII (financing now ok)

Superfluid helium

- -NIST source (built-in lifetime experiment)
- -ILL: Cryo-EDM (built-in EDM experiment)
- -Small 'portable' test source at FRMII allows extraction

UCN sources

Summary

- Neutrons offer excellent laboratory to study particle physics and cosmology
 - CP-violation and matter-antimatter asymmetry
 - Nucleon weak interaction and primordial nucleosynthesis
 - Right-handed part of nature dark matter candidates

Some key experiments performed with stored neutrons

- Technological development of UCN sources
- Large financial investment based on existing n-sources
- Technological challenges
- Precision experiments required
 - Systematic and statistical accuracy mandatory
 - New ideas coming up exploration stage