Probing exotic weak currents in nuclear β-decay

> Workshop on Precision Measurements at Low Energies PSI, January 18-19, 2007

Nathal Severijns

 β^+

Kath. University Leuven, Belgium

1. $Ft^{0^+ \rightarrow 0^+}$ (D. Dubbers)

2. βv -correlation coefficient **a**

- neutron : aSPECT
- nuclei : TRINAT / TRIUMF
 - Berkeley MOT (K. Jungmann)
 - KVI (K. Jungmann)
 - LPC-TRAP / GANIL
 - WITCH / ISOLDE

β -asymmetry parameter **A**

- neutron : (D. Dubbers S. Paul)
- nuclei : Leuven ISOLDE

3. symmetry tests

- parity
- TRV : EDM (K. Jungmann)
 - D $(J.p_exp_v; V,A)$
 - R (σ .Jxp_e; S,T); neutron R-TRV / PSI

How it started:

 θ - τ **puzzle:** one particle !? / P-violating decay !?

 $^{60}Co \rightarrow ^{60}Ni + e^- + \overline{\nu}_e$

Oct.1956 Lee & Yang: P-violation in weak interaction not yet tested ! [PR 104 (1956) 254]

Jan.1957 Wu et al.: [PR 105 (1957) 1413]

⁶⁰Co β-decay P- violating !!

STRUCTURE OF THE WEAK INTERACTION IN NUCLEAR BETA DECAY

β-decay Hamiltonian (Lee & Yang) :

$$H_{\beta}/g \propto (\overline{p} \ 1 \ n) [\overline{e} \ 1 \ (C_{S} + C_{S}' \ \gamma_{5}) \ v]$$

$$+ (\overline{p} \ \gamma_{\mu} \ n) [\overline{e} \ \gamma_{\mu} \ (C_{V} + C_{V}' \ \gamma_{5}) \ v]$$

$$+ \frac{1}{2}(\overline{p} \ \sigma_{\mu\nu} \ n) [\overline{e} \ \sigma_{\mu\nu} \ (C_{T} + C_{T}' \ \gamma_{5}) \ v]$$

$$- (\overline{p} \ \gamma_{\mu} \gamma_{5} \ n) [\overline{e} \ \gamma_{\mu} \gamma_{5} (C_{A} + C_{A}' \ \gamma_{5}) \ v]$$

$$+ (\overline{p} \ \gamma_{5} \ n) [\overline{e} \ \gamma_{5} \ (C_{p} + C_{p}' \ \gamma_{5}) \ v]$$

with γ_i (i = 1, 2, 3, 4) Dirac matrices ($\gamma_5 = \gamma_1 \gamma_2 \gamma_3 \gamma_4$) and $\sigma_{\mu\nu} = -\frac{i}{2}(\gamma_\mu \gamma_\lambda - \gamma_\lambda \gamma_\mu)$

P-violation if $C_i \neq 0$ and $C'_i \neq 0$ T-violation if $\operatorname{Im}(C_i^{()} / C_j) \neq 0$

from: N. Severijns, M. Beck, O. Naviliat-Cuncic, Rev. Mod. Phys. 78 (2006) 991

* no time reversal violation

(except for the CP-violation described by the phase in the CKM matrix)

 C_{s}/C_{v}

distribution in

- electron and neutrino directions and in
- electron energy

from polarized nuclei :

$$\omega\left(\left\langle \vec{J}\right\rangle | E_{e}, \Omega_{e}, \Omega_{v}\right) dE_{e} d\Omega_{e} d\Omega_{v}$$

$$\propto \underbrace{F(\pm Z, E_{e})}_{\text{Fermi}} \underbrace{\frac{p_{e} E_{e} (E_{0} - E_{e})^{2} dE_{e} d\Omega_{e} d\Omega_{v}}_{\text{phase space}}$$

$$x \notin \left\{ 1 + \left(\frac{\vec{p}_{e} \cdot \vec{q}}{E_{e}E_{v}} \right) + \left(\frac{\vec{p}_{e} \cdot \vec{q}}{E_{e}} \right) + \left(\frac{\vec{J} \cdot \vec{P}_{e}}{E_{e}} \right) + R \ \vec{\sigma} \cdot \frac{\vec{J}}{J} \times \frac{\vec{P}_{e}}{E_{e}} + \dots \right\}$$

$$a \underbrace{\frac{\vec{p}_{e} \cdot \vec{q}}{E_{e}E_{v}}}_{\text{Nucleus}} \underbrace{\frac{\beta^{-\nu}}{V_{e}}}_{\text{J,D, Jackson, S.B. Treiman, H.W. Wyld, Nucl. Phys. 4 (1957) 206}}_{\text{J,D, Jackson, S.B. Treiman, H.W. Wyld, Nucl. Phys. 4 (1957) 206}} \underbrace{\tilde{\mu}_{e} \cdot \vec{q}}_{\text{J,D, Jackson, S.B. Treiman, H.W. Wyld, Nucl. Phys. 4 (1957) 206}} \underbrace{\tilde{\mu}_{e} \cdot \vec{q}}_{\text{J,D}, Jackson, S.B. Treiman, H.W. Wyld, Nucl. Phys. 4 (1957) 206}}$$

1. \Im t-values of 0⁺ \rightarrow 0⁺ superallowed Fermi transitions

$$\mathcal{F}t = ft (1 + \delta_R) (1 - \delta_C) = \frac{K}{2 G_F^2 V_{ud}^2 (1 + \Delta_R^V)} = 3074.4(12) \text{ s} \quad (^{1,2})$$

$$\int_{3090}^{3090} \int_{1}^{2^2} Mg \int_{1}^{3^3} Ar \int_{1}^{4^2} \int_{1}^{4^2} Sc_{4^6} V \int_{1}^{4^2} \int_{1}^{4^2} Sc_{4^6} V \int_{1}^{4^2} \int_{1$$

(²) Savard et al., PRL 95 (2005) 102501

physics information from the $0^+ \rightarrow 0^+$ Fermi transitions

1. right-handed currents:

-0.0005 < ζ < 0.0015 (90% C.L.)

2. scalar currents:

$$-0.005 < \operatorname{Re}\left(\frac{C_{S} + C_{S}'}{C_{V}}\right) < 0.011$$
(90% CL)

Ad 1: Left Right Symm.-models $W_1 = W_L \cos\zeta - W_R \sin\zeta$ $W_2 = W_L \sin\zeta + W_R \cos\zeta$ $\delta = m_1^2 / m_2^2$

(assuming maximal P-violation and T-invariance for V and A interactions)

recoil corr. (induced form factors) $\approx 10^{-3}$; radiative corrections $\approx 10^{-4}$

aSPECT experiment (FRM-II München)

(Mainz, Budapest, Karlsruhe, München, Sussex)

aSPECT - proton spectra

- about factor 10 improvement necessary to have same sensitivity to g_A/g_V as A_n -parameter
- sensitive to C_s and C_T

- Proton spectrum looks ok, Countrate ~ 500 Hz
- Signal to background ratio > 10:1
- Proton Signal not well separated from electronic noise

S. Baessler

Extraction of a

- Fulfills requirements for statistical accuracy
- Instabilities (Electronic Noise?)

traps for correlations in nuclear beta decay

isotope	trap	meas.	lab	
²¹ Na	MOT	a _F ⁽¹⁾	LBNL	P
^{38m} K	MOT	a _F ⁽²⁾	TRIUMF	F
⁶ He	Paul	a _{GT}	LPC/GANIL	F
³⁵ Ar	Penning	a _F	KUL/ISOLDE	N
²¹ Na, ¹⁹ Ne, ²³ Mg	МОТ	a , D	KVI	0
⁸² Rb	МОТ	A _{GT}	LANL	8
				_

N. Scielzo, S.J. Freedman et al.,	PRL 93 (2004) 102501
A. Gorelov, J. Behr et al.,	PRL 94 (2005) 142501
R. Rodriguez, O. Naviliat et al.,	NIM A565 (2006) 876
M. Beck, N. Severijns et al.,	NIM A503 (2003) 567
G.P. Berg, K. Jungmann et al.,	NIM B204 (2003) 52
S.G. Crane, D.J. Vieira et al.,	PRL 86 (2001) 2967

⁽¹⁾ = 0.5243(91) Scielzo et al. PRL 93(2004) 102501 ⁽²⁾ = 0.9978(30)(37) Gorelov et al. PRL 94 (2005) 142501

TRINAT MOT trap at TRIUMF-ISAC (Vancouver)

search for exotic scalar couplings with ${}^{38m}\mathbf{K}$ (J. Behr et al.)

$38m$
K $\rightarrow ^{38}$ Ar + e⁺ + v

superallowed $0^+ \rightarrow 0^+$ pure Fermi transition (t_{1/2} = 0.95 s)

$$\tilde{a} = \frac{a}{1 + \gamma \frac{m_e}{E_e} b} = 0.9981 \pm 0.0030 \pm 0.0035 \implies \frac{|C_s|^2 + |C_s|^2}{|C_v|^2} \le 0.097$$

$$(\tilde{a}_{SM} = 1) \qquad (90\% \text{ C.L.} \approx 1.65\sigma)$$

A. Gorelov, J. Behr et al., Phys. Rev. Lett. 94 (2005) 142501

LPC-Caen Paul trap at GANIL (O. Naviliat, G. Ban et al.)

search for exotic tensor couplings

 $a(\frac{\mathbf{p_e} \cdot \mathbf{p}_{\nu}}{E_e E_{\nu}})$ in a Gamow-Teller transition

the signature is in the ion recoil spectrum

candidate

$${}^{6}\text{He}
ightarrow {}^{6}\text{Li} + e^{-} + ar{
u}_{e}$$

- general principle
- produce ⁶He nuclei
- trap the ions (requires beam cooling)
- measure recoil ⁶Li TOF (E_R<1.4 keV)

O. Naviliat

trapping/measuring

LPC-Caen Paul trap

O. Naviliat

first results from LPC-Caen trap at GANIL :

- 2005: proof of principle
- 2006: first data
- difference between experiment and simulation due to main systematic effect, i.e. rf-field

WITCH double-Penning trap system at ISOLDE-CERN

K.U.Leuven, ISOLDE-CERN, Uni Münster, GSI, NPI-Řež (Prague)

Weak Interaction Trap for CHarged particles

cooler & decay Penning traps + retardation spectrometer

search for exotic scalar/tensor couplings in the beta-neutrino correlation by recoil ion energy spectrum shape

WITCH-Collaboration:

WITCH-experiment 03 nov 2006

V. Kozlov, S. Coeck, M. Tandecki, S. Van Gorp, M. Beck, P. Friedag, C. Weinheimer, F. Wenander, P. Delahaye, D. Beck, N. Severijns

WITCH-experiment nov 2006

WITCH-experiment nov 2006

for a pure Gamow-Teller transition :

(assuming maximal P-violation and T-invariance for V and A interactions)

recoil corr. (induced form factors) $\approx 10^{-3}$; radiative corrections $\approx 10^{-4}$ / A_{GT} independent of nuclear matrix elements

Low Temperature Nuclear Orientation + Geant 4

(NICOLE-ISOLDE, K.U.Leuven, NPI Rez-Prague, Uni Bonn)

Leuven:
$${}^{60}Co\underline{Cu}$$
, $B_{ext} = 13 T$
ISOLDE: ${}^{63}Cu\underline{Fe}$, $B_{hf} = 22 T$

$$\frac{\left[W(\theta) - 1\right]_{exp}}{\left[W(\theta) - 1\right]_{sim}} = \frac{\left[A_{GT}^{\beta^{m}} P \frac{v}{c} Q \cos\theta\right]_{exp}}{\left[A_{GT,SM}^{\beta^{\mp}} P \frac{v}{c} Q \cos\theta\right]_{sim}} = \frac{A_{GT}^{\beta^{\mp}}}{A_{GT,SM}^{\beta^{\mp}}}$$

IS431-experiment

3. Testing time reversal violation in free neutron decay (Univ. Krakow, PSI, LPC-Caen, K.U.Leuven, ...)

(SINQ-FUNSPIN)

EVENTIND, 7 39385 FILE? ON LINE

YX PROJECTION

ZX PROJECTION

⁸Li : Sromicki et al., PSI – ETH Zurich
¹⁹Ne : F. Calaprice et al., Princeton
^{32,33}Ar : E.G. Adelerger et al., ISOLDE

1. $Ft^{0^+ \to 0^+}$

2. βv -correlation coefficient **a**

- neutron : aSPECT
- nuclei : TRINAT / TRIUMF
 - LPC-TRAP / GANIL
 - WITCH / ISOLDE

β -asymmetry parameter **A**

nuclei : Leuven – ISOLDE

3. symmetry tests

TRV: R (σ .Jxp_e; S,T); neutron R-TRV / PSI