

Workshop on Precision Measurements at Low Energy Villigen, 18-19 January 2007

Research on Discrete Symmetries ". with Stable and Radioactive Isotopes

Symmetries and Forces

- Properties of Known Forces
- Properties of Fundamental Fermions
- Searches for New Interactions
- Standard Model and Extensions
- Discrete Symmetries C, P, T, CP, CPT
 - Precision Experiments
 - Novel Techniques
 - \Rightarrow Some Examples

Klaus Jungmann, Kernfysisch Versneller Instituut, Rijksuniversiteit Groningen

Forces and Symmetries

Forces and Symmetries →Lee/Yang 1956

Local Symmetries ⇔ Forces • fundamental interactions

Global Symmetries \Leftrightarrow **Conservation Laws**

- energy
- momentum
- electric charge
- • • •

Conservation without known Symmetry

- lepton number
- charged lepton family number
- baryon number
- •

Properties of Known Forces

Standard Model

- 3 Fundamental Forces
 - Electromagnetic Weak Strong
- 12 Fundamental Fermions
 - Quarks, Leptons
- 13 (Gauge) Bosons
 - γ,W⁺, W⁻, Z⁰, H, 8 Gluons

However

- many open questions
 - Why 3 generations ?
 - Why some 30 Parameters?
 - Why CP violation ?
 - Why us?
 - • • •
- Gravity not included
- No Combind Theory of Gravity and Quantum Mechanics

Fundamental Interactions – Standard Model

Speculative Models:

Supersymmetry, Cold dark matter, Tachyons, Radiative muon generation, Technicolor, Leptoquarks, Extra gauge bosons, Extra dimensions, LeftRight Symmetry, Compositeness, Lepton flavour violation, ⇒ No Status in Physics, yet: "Not even wrong"

Experiments at the Frontiers of Standard Theory

High Energy Frontier

Precision Frontier

Known Interactions -Fundamental Constants and Searches for New Forces

Examples:

- Electron g-2
- Bound State g-factors
- Muon g-2

High Precision Electron g-2 Single electron in a Penning Trap

WASHINGTON

Harvard University

H.G. Dehmelt

hyperbolic trap

G. Gabrielse

Cylindrical Trap operated at well selected frequencies

Fine Structure Constant α

The Nuon Nagnetic Anomaly

Spin precession in (electro-) magnetic field

 $\vec{\omega} = \frac{e}{m} \left[a_{\mu} \vec{B} \right]$

Discrete Symmetries

H.W. Wilschut

The World according to Escher

Discrete Symmetries

Parity

Possible Gains from Parity Violation Experiments

In past: - excellent test of Standard Model

Now:

- running of weak mixing angle
- sensitivity to some leptoquark models, Z'
- s-quark content of nucleon
- neutron distributions in nuclei
- anapole moments
- Cs, Fr Atomic Parity Violation experiments are going on
- electron scattering & hadron forward scattering going on

Single Trapped Ba Ion

- Parity admixture measured through light shift
- Ra⁺ some 20 times bigger effects than Ba⁺
- Ground breaking work at Seattle

Discrete Symmetries

Zoom in on Time -Reversal-violation

Correlations in nuclear β-decays

TRIMP New Interactions in Nuclear β -Decay

In Standard Model: Weak Interaction is V-A

In general β-decay could be also S, P, T

R and **D** test both **T**ime **R**eversal **V**iolation

- $D \rightarrow most potential$
- $\mathbf{R} \rightarrow$ scalar and tensor (EDM, *a*)
- technique D measurements yield a, A, b, B

TRI μ **P New Interactions in Nuclear** β **-Decay**

In Standard Model: Weak Interaction is V-A

In general β-decay could be also S, P, T

 $\langle \vec{J} \cdot \vec{p} \times \vec{q} \rangle \neq 0$?

TRIMP New Interactions in Nuclear β -Decay

In Standard Model: Weak Interaction is V-A

In general β-decay could be also S, P, T

Traps for weak interaction physics

1. Atom traps :	traps: - TRIUMF-ISAC, ^{38m} K, βν-correlation (J. Behr et al.)					
	A. Gorelov et al., Hyperfine Interactions 127 (2000) 373					
- LBNL & UC Berkeley, ²¹ Na, βv-correlation (S.J. Freedman et al.)						
N. Scielzo, Ph. D. Thesis (2003)						
- LANL Los Alamos, ⁸² Rb, β-asymmetry (D. Vieira et al.)						
S.G. Crane et al., Phys. Rev. Lett. 86 (2001) 2967						
	- KVI-Groningen, Na, Ne, Mg, D-coefficient (K. Jungmann et al.)					
Ra, EDM experiment						
G.P. Berg et al., NIM B204 (2003) 526						
2. Ion traps :	- LPC-Caen, ⁶ He, βv-correlation (O. Naviliat-Cuncic et al.)					
	G. Ban et al., NIM A518 (2004) 712					
- WITCH, Leuven-ISOLDE, ³⁵ Ar, βv-correlation (N. Severijns						
	D. Beck et al., Nucl. Inst. Methods Phys. Res., A 503 (2003) 567					
- CPT-trap Argonne, ¹⁴ O, βv-correlation (G. Savard et a						
	G. Savard et al., Nucl. Phys. A654 (1999) 961c					
	- ISOLTRAP-CERN, mass for $0 \rightarrow 0 $					

The TRImP Facility

(a) KVI Groningen

Dedicated to Fundamental Interactions and Symmetries

> β-decays EDMs

TRIµP

Separator commissioning

Yield of ²¹Na at the focal plane: 5.3 MHz/kW {@ 1 atm H₂} Now achieved: > 99% ²¹Na

Other isotopes produced: ¹²N, ¹²B, ¹⁹Ne, ²⁰Na, ²²Mg, ²¹³Ra

TRIµP Ion Catcher

- High efficiency for Na isotopes: Thermal Ioniser
- Gas stopper a generic solution
- Recent results on stopping in cooled Helium gas (RIASH, P.Dendooven \rightarrow FOM projectruimte)

First Thermal Ionizer Results

Thermal Ionizer Efficiency for Na-20 Dec '06

Since the production works -Just an intermezzo

 $^{12}X \rightarrow \beta + 3\alpha$

β-decay studies of states in ¹²C Fynbo et al.

10	¹² B decay, B.R.(%)		¹² C	¹² N decay, B.R.(%)		
1	Literature	KVI	Energy	Literature		
	value	experiment	level (MeV)	value	ut	
105	97.22(30)	98.16(4)	g.s.	94.55	_0(10)	
10	1.201(17)		4.43891(31)			
10"	1.5(3)	0.53(3)	7.6542(15)		1.26(6)	
103	0.08(2)	0.106(5)	10.3/	J(15)	0.52(3)	
10 ²	?	$2.95(5) \cdot 10^{-4}$	12.	0.31(12)	0.199(6)	
10	-	-	15.11	4.4(15)x10-3	?	
1 0	$1^{2}X \rightarrow \beta + {}^{12}C$					
		Sum energy of the 3 α-particl	es (MeV)	$\rightarrow 3\alpha$		

Discrete Symmetries

back to β-decays

New Interactions in Nuclear β-Decay

In Standard Model: Weak Interaction is V-A

In general β-decay could be also S, P, T

$$\frac{\mathrm{d}^{2}W}{\mathrm{d}\Omega_{e}\mathrm{d}\Omega_{\nu}} \sim 1 + \mathbf{a} \frac{\mathbf{p} \cdot \hat{\mathbf{q}}}{E} + b\Gamma \frac{m_{e}}{E} \\ + \langle \mathbf{J} \rangle \cdot \left[A \frac{\mathbf{p}}{E} + B \hat{\mathbf{q}} + D \frac{\mathbf{p} \times \hat{\mathbf{q}}}{E} \right] \\ + \langle \mathbf{\sigma} \rangle \cdot \left[G \frac{\mathbf{p}}{E} + Q \langle \mathbf{J} \rangle + R \langle \mathbf{J} \rangle \times \frac{\mathbf{p}}{E} \right]$$

Principle : MOT + RIMS

New Interactions in Nuclear β-**Decay**

In Standard Model: Weak Interaction is V-A

In general β-decay could be also S, P, T

Vector [Tensor] Scalar [Axial vector] ²¹Na Berkeley: Scielzo, Freedman, Fujikawa, Vetter PRL 93, 102501-1 (2004) $a_{exp} = 0.5243(91)$ $a_{\text{theor}} = 0.558(6)$ $\frac{\mathrm{d}^2 W}{\mathrm{d}\Omega_e \mathrm{d}\Omega_v} \sim 1 + a \frac{\mathbf{p} \cdot \hat{\mathbf{q}}}{E} + b \Gamma \frac{m_e}{E}$ ^{38m}K TRIUMF A. Gorelov et al. PRL 94, 142501 (2005) $a_{exp} = 0.9978(30)(37)$ $a_{theor} = 1$
Asymmetry "a" in ²¹Na decay

Before any serious conclusions: $e^{+}/(e^{+}+\gamma)$ branching ratio needed to be re-measured 5 disagreeing values existed New measurement (Caen,Bordeaux,KVI) First user experiment (a) TRIµP facility at KVI L Achouri et al preliminary: 4.85(12) % \Rightarrow New publication (Texas A&M) V.E. Iacob et al., Phys.Rev.C74, 015501 (2006) final value: 4.74(4) % No change to SM discrepancy

Discrete Symmetries

Zoom in on T-violation

Permanent Electric Dipole Moments

In many Models related to EDMs: Properties of Fundamental Fermions

In SO(10) the (electron) electric dipole moment is approximately related to rare muon decays, e.g. $\mu \rightarrow e \gamma$

$$\frac{|\mathbf{d}_{\mathrm{e}}|}{10^{-27} \mathrm{e} \mathrm{cm}} = 1.3 \sin \phi \sqrt{\frac{\mathrm{B.R.} \ (\mu \rightarrow \mathrm{e} \ \gamma)}{10^{-12}}}$$

Violations of lepton flavour and CP in supersymmetric unified theories¹

Riccardo Barbieri[†], Lawrence Hall[†] and Alessandro Strumia[†]

IFUP – TH 72/94 UCB-PTH-94/29 hep-ph/9501334 LBL 36381 January 1995

Fundamental Particles

J is the only vector characterizing a non-degenerate quantum state magnetic moment: $\vec{\mu} = g \ \mu_x \ c^{-1} \ J$

electric dipole moment: $\vec{d} = \eta \ \mu_x \ c^{-1} \ \vec{J}$

magneton:

 $\mu_x = e\hbar / (2m_x)$

 $\mu_{x} c^{-1} J = \begin{cases} 9.7 \cdot 10^{-12} e cm (electron) \\ 5.3 \cdot 10^{-15} e cm (nucleon) \end{cases}$

Permanent Electric Dipole Moment

violates:

- Parity
- Time reversal
- **CP- conservation**

if CPT conservation assumed

Standard Model value orders of magnitude below experimental limit:

⇒ Window for New Physics beyond Standard Theory

What's particular about CP-violation P

Matter – Antimatter Asymmetry <u>MAY</u> be explained by (Sacharov)

- Baryon number violation
- Thermal non equilibrium
- CP- violation

Beware: There are other routes!

e.g.

Matter – Antimatter Asymmetry <u>MAY</u> be explained by (Kostelecky et al.):

- Baryon number violation
- CPT violation

Generic EDM Experiment

Generic EDM Experiment Sensitivity

 \Rightarrow Work on

- high Polarization, high Field
- high Efficiency
- long Coherence Time
- ⇒ one day gives more statistics than needed to reach previous experimental limits

Lines of attack towards an EDM

Free Particles → particle EDM → unique information → new insights	neutron muon deuteron bare nuclei ? Elec	Hg Xe Tl Cs Rb Ra 	Atoms → electron EDM → nuclear EDM → enhancements
\rightarrow new techniques	Din		\rightarrow challenging technology
→ challenging technology	Mon	nent	
\rightarrow electron EDM \rightarrow strong enhancement	goa S new sourc	ul: e of CP	→ electron EDM → strong enhancements
\rightarrow new techniques		- /	→ systematics ??
→ poor spectroscopic data Molecules	YbF PbO PbF HfF ⁺ ,ThF ⁺	garnets (Gd ₃ Ga ₅ O ₁₂) (Gd ₃ Fe ₂ Fe ₃ O solid He ?	12) Solid State

EDM Limits as of summer 2006

			Possible
Particle	Exp. Limit	SM	New Physics
	[10 ⁻²⁷ e cm]	[factor to go]	[factor to go]
e (Tl)	< 1.6	10 ¹¹	≤1
μ	$< 1.05 * 10^{9}$	10 ⁸	≤ 200
τ	$< 3.1 * 10^{11}$	10 ⁷	≤ 1700
n	< 30	10 ⁴	≤ 30
Tl (odd p)	< 10 ⁵	10 ⁷	$\leq 10^5$
Hg (odd n)	< 0.21	10⁵	various

- Why so many?
- Which is THE BEST candidate to choose ?

None is THE BEST - We need many experiments!

Possible Sources of EDMs

Discrete Symmetries

Permanent Electric Dipole Moments

Radium Atom

Radium Permanent Electric Dipole Moment

Ra also interesting for weak interaction effects Anapole moment, weak charge (Dzuba el al., PRA 6, 062509)

Benefits of Radium

- near degeneracy of ${}^{3}P_{1}$ and ${}^{3}D_{2}$ $\Rightarrow \sim 40\ 000\ enhancement$
- some nuclei strongly deformed
 ⇒ nuclear enhancement 50~1000 (?is Schiff operator correct?)
- ³D: electron spins parallel
- \Rightarrow electron EDM
- ¹S : electron Spins anti-parallel
- \Rightarrow atomic / nuclear EDM

Laser Cooling Chart

Radium Spectroscopy Data

Radium Discharge analyzed with grating spectrometer *Ebbe Rasmussen, Z. Phys, 87, 607 , 1934; Z. Phys, 86, 24, 1933.* Resolution ~ 0.05 Å, 99 lines, absolute accuracy

Corrections in deduced energy levels H.N. Russel, Phys. Rev. 46, 989 (1934)

Similar to Barium \Rightarrow identification as alkaline earth element

L. Willmann

Colloing & Trapping of Heavy Alkali Earth: Ra

Preliminary Transition Rates as calculated by K. Pachucky (also by V. Dzuba et al.)

L. Willmann

Radium slower and tran

Laser-Trapping of Radium Atoms

- World's first laser trap of radium atoms: both ²²⁵Ra and ²²⁶Ra atoms are cooled and trapped!
- Key ²²⁵Ra frequencies, lifetimes measured.

R. Holt, Argonne @ Lepton Moments 2006:

Search for a Nuclear EDM with Trapped Radium Atoms

Irshad Ahmad, Roy J. Holt, Zheng-Tian Lu, Elaine C. Schulte Physics Division, Argonne National Laboratory

Discrete Symmetries

Permanent Electric Dipole Moments

> Charged Particles muon deuteron nuclei

The Nuon Nagnetic Anomaly

Spin precession in (electro-) magnetic field

 $\vec{\omega} = \frac{e}{m} \left[a_{\mu} \vec{B} \right]$

Magnetic and Electric Dipole Moment are Real and Imaginary part of a more general Dipole Moment

$$\mathcal{L}_{\rm DM} = \frac{1}{2} \left[D\bar{\mu}\sigma^{\alpha\beta} \frac{1+\gamma_5}{2} + D^*\bar{\mu}\sigma^{\alpha\beta} \frac{1-\gamma_5}{2} \right] \mu F_{\alpha\beta} \qquad \sigma^{\alpha\beta} = \frac{1}{2} \left[\gamma^{\alpha}, \gamma^{\beta} \right]$$

$$\begin{array}{lcl} a_{\mu} \frac{e}{2m_{\mu}} & = & \Re D \\ \\ d_{\mu} & = & \Im D \end{array}$$

$$d^{NP}_{\mu} = 3 \cdot 10^{-22} \cdot \left(rac{a^{NP}_{\mu}}{3 \cdot 10^{-9}}
ight) \cdot an \phi_{CP} \ e \ cm$$

The Nuon Hectric Dipole Noment

Muon EDM – A Parasitic Measurement

An Improved Limit on the Electric Dipole Moment of the Muon

Ronald McNabb (for the Muon g-2 collaboration) Dept. of Physics, University of Illinois at Urbana-Champaign 1110 W Green St., Urbana, IL 61801, USA.

Data from the muon g-2 experiment at Brookhaven National Lab has been analyzed to search for a muon electric dipole moment(EDM), which would violate parity and time reversal symmetries. An EDM would cause a tilt in the spin precession plane of the muons, resulting in a vertical oscillation in the position of electrons hitting the detectors. No signal has been observed. Based on this analysis, an improved limit of 2.8×10^{-19} e-cm(96% CL) is set on the muon EDM.

Figure 2: A tilt in the precession plane results in a vertical oscillation of hits on the detector face.

presently:

 $d\mu < 2.8 \cdot 10^{-19} \text{ ecm}$ (95% C.L.)

better value expected to come out soon

The Muon Hectric Dipole Noment

Spin precession in (electro-) magnetic field

$$\vec{\mathbf{\omega}} = \frac{e}{m} \left[\mathbf{a}_{\mu} \vec{\mathbf{B}} - \left(\mathbf{a}_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{\mathbf{E}}}{\mathbf{c}} \right] \\ + \frac{e}{m} \left[\frac{\eta}{2} \left(\frac{\vec{\mathbf{E}}}{\mathbf{c}} + \vec{\beta} \times \vec{\mathbf{B}} \right) \right]$$

Some Candidate Nuclei for EDM in Ring Searches

Nucleus	Spin J	μ/μ_N	Reduced Anomaly a	T _{1/2}
¹³⁹ 57La	7/2	+2.789	-0.0305	
$^{123}551}$ Sb	7/2	2.550	-0.1215	
$^{137}55}$ Cs	7/2	+2.8413	0.0119	30y
$^{223}_{87}$ Fr	3/2	+1.17	< 0.02	22 min
⁶ ₃ Li	1	+0.8220	-0.1779	
2 ₁ H	1	+0.8574	-0.1426	
$^{75}_{32}$ Ge	1/2	+0.510	+0.195	82.8 m
¹⁵⁷ 69Tm	1/2	+0.476	0.083	3.6 m

More complete lists: I.B. Khriplovich, K. Jungmann GSI EDM Workshop, 1999

The Muon Electric Dipole Noment

 $\vec{a} \cup \vec{\mathbf{E}}$

Spin precession in (electro-) magnetic field $\vec{\omega} = -\frac{e}{a_{\mu}\vec{B}} - (a_{\mu}\vec{B})$

$$\mathbf{F} = \frac{e}{m} \left[\mathbf{a}_{\mu} \vec{\mathbf{B}} - \left(\mathbf{a}_{\mu} - \frac{\mathbf{I}}{\gamma^{2} - \mathbf{I}} \right) \frac{\beta \times \mathbf{E}}{\mathbf{c}} \right] \\ + \frac{e}{m} \left[\frac{\eta}{2} \left(\frac{\vec{\mathbf{E}}}{\mathbf{c}} + \vec{\beta} \times \vec{\mathbf{B}} \right) \right]$$

Deuteron is stable: Different polarimeter needed

Searches for EDMs in charged particles: Novel Method invented Motional Electric Fields exploited

International Collaboration (USA, Russia, Japan, Italy, Germany, NL, ...)

- possible sites discussed: BNL, KVI, Frascati, ...
- Limit $d_D < 10^{-27} \dots 10^{-29} e cm$
- Can be >10 times more sensitive than neutron d_n, best test for Θ_{OCD}, ...

$$d_{D} = -4.67d_{d}^{c} + 5.22d_{u}^{c},$$

$$d_{n} = -0.01d_{d}^{c} + 0.49d_{u}^{c}$$

C.P. Liu, R.G.E. Timmermans Phys.Rev.C 70, 055501 (2004)

Discrete Symmetries

CPT

- Lorentz Invariance, preferred reference frame
- Particle Antiparticle properties
- Spin
- Fermions and Bosons only
- • • •

CPT – Violation Lorentz Invariance Violation

What is best CPT test ?

often quoted:

- K⁰- K⁰ mass difference (10⁻¹⁸)
- e⁻ e⁺ g- factors (2* 10⁻¹²)
- We need an interaction with a finite strength ! New Ansatz (Kostelecky)

• K	≈ 10 ⁻²¹	GeV
-----	----------------------------	-----

- n ≈ 10⁻³⁰ GeV
- p ≈ 10⁻²⁴ GeV
- e ≈ 10⁻²⁷ GeV

• μ $\approx 10^{-23}$ GeV

• Future: Anti hydrogen ≈ 10⁻²⁷ GeV

CPT and Lorentz Invariance from Muon Experiments

V.W. Hughes et al., Phys.Rev. Lett. 87, 111804 (2001)

Muonium:

new interaction below

2*10-23 GeV

Muon g-2:

new interaction below

3* 10⁻²² GeV (CERN&BNL combined)

order of magnitude better expected from BNL when analysis will be completed (2007)

Applications of Developped Techniques

ALCATRAZ

TRIµP

The ALCATRAZ Experiment

a precursor for TRIµP (R. Hoekstra, R. Morgenstern et al.) \rightarrow Early Spin Off

 10^{-12} sensitivity reached \rightarrow working towards 10^{-14}

Deflected Slow Beam

Lepton Number

 $0\nu 2\beta$ decay

Neutrinoless Double β-Decay

$(A,Z) \rightarrow (A,Z+2) + 2e^{-}$

 $1/T_{1/2} = G_{0\nu} (E_0,Z) | M_{GT} + (g_V/g_A)^2 \cdot M_F |^2 < m_{\nu} > 2$

- technologies required
- need nuclear matrix elements

- There are plenty of opportunities to investigate Fundamental Interactions using trapped and stored particles.
- > Precision Experiments are indispensable .
- **Experiment and Theory both needed.**
- > Systematics and Statistics crucial.
- > New facilities promise progress.

Experiments require LONG TERM COMMITMENTS and RIGOROUS SUPPORT after CAREFUL SELECTION.
Thank YOU !

TRIµP Ion Catcher

- High efficiency for Na isotopes: Thermal Ioniser
- Gas stopper a generic solution
- Recent results on stopping in cooled Helium gas (RIASH, P.Dendooven \rightarrow FOM projectruimte)

First Thermal Ionizer Results

Thermal Ionizer Efficiency for Na-20 Dec '06 Transmission efficiency [%] **Temperature** [C]

