

## Facility for Antiproton and Ion Research –

## Precision Measurements at Low Energies

Walter F. Henning – GSI Darmstadt & University of Frankfurt Villigen, January 18-19, 2007





## **Precision Measurements at Low Energies**

- Atomic Physics: Low energy QED and tests of the SM (cooled U<sup>91+</sup>) Low energy CPT tests (antiproton/hydrogen-atom/molecule) Parity violation Fermion condensates
- Nuclear Physics: Masses (SBD & CKM matrix; I & CE effects; dripline nuclei) Weak decays (ß-v correlations & SM) Baryonic molecules (shape isomers; nucleon driplines) Cold Coulomb barrier reactions (SHE)
- Hadron Physics: Low momentum, non-perturbative QCD Low energy meson spectrum and QCD exotics Infra-red divergence of gluon fields (x<<1)</li>
- Nuclear (QCD) Matter Physics:

Low temperature QCD phase diagram Phase boundary and QCD Critical point



## Facility for Antiproton and Ion Research –

Precision Measurements at Low Energies

Walter F. Henning – • Villigen, January 18-19

Introduction - a (very) brief description of the Facility

- Science Motivation and Goals
- Outlook



Helmholtz Centre for Ion Research



## Brief Description of the Facility





## **Electron-Beam Cooled Ion & Antiproton Beams**



### Ion Beam Cooling ...



relative ion velocity v/v<sub>0</sub>





## Storage Rings: Cooled Ion Beams





0.97 1 1.03 rel. ion velocity v/v<sub>0</sub>



## Science Motivation & Research Programs



## FAIR Baseline Technical Report 2006

**Volume 1: Executive Summary** Volume 2: Technical Report A ucture ca. 700 pages Volume 3: Techn. Experimen ca. 450 pages Volume 4: Techn. Experim FAIR Baseline Technical Report ca. 700 pages Volume 5: Techn. Experi CLO PROPERTY **Applied Physi** Volume 6: Techn. Repo a. Supplies Electrical b. 2400 Authors from 44 countri Civil En C. d. Radiatic Supplement 1: Cost, Schedure, Supplement 2: Costbook (5000 entries; 3500 WPs))





# Transition from the perturbative to the non-perturbative regime of Quantum-Chromodynamics (QCD)



## <u>H</u>igh <u>Energy</u> <u>S</u>torage <u>R</u>ing, HESR



- High Rates
  - Total σ ~ 55 mb
  - peak > 10<sup>7</sup> int/s
- Vertexing
  - $(\sigma_p, K_S, \Lambda, ...)$
- Charged particle ID
  - $\quad (e^{\pm},\mu^{\pm},\pi^{\pm},p,\ldots)$
- Magnetic tracking
- El-mag. Calorimetry
  - (γ,π<sup>0</sup>,η)
- Forward capabilities
  - (leading particles)
- Sophisticated Trigger(s)







## PANDA Physics Program



## Charmed Hadrons @ PANDA







PANDA/GSI

Dec. 13, 2





### Comparison e<sup>+</sup>e<sup>-</sup> versus pp

<u>e<sup>+</sup>e<sup>-</sup></u> interactions: only 1<sup>--</sup> states formed other states populated in secondary decays (moderate mass resolution)





-1.4

- 1.2

X1

b)

**Crystal Ball** 

pp reactions: all states directly formed (very good mass resolution)



1.4

1.2

χ,

## Production of double hypernuclei



#### **Properties of neutron stars**







## The Nuclear Landscape

#### **Superheavy Elements**



### The Nuclear Landscape



## Secondary Beams of Short-Lived Nuclei



## The NUSTAR-Project at FAIR (NUclear STructure, Astrophysics and Reactions)









## Evidence for pygmy dipole in unstable neutron-rich Sn isotopes



at LAND - GSI: Measurement  $\sim$  **10 days** Resolution  $\sim$  1 - 2 MeV

#### P. Adrich et al., PRL 95 (2005) 132501 LAND Collaboration



| at R <sup>3</sup> B - FAIR:        |
|------------------------------------|
| Measurement ~ 100 seconds          |
| Resolution $\sim$ order of 100 keV |

Protonenzahl









## The phase diagram of strongly interacting matter



## Mapping the QCD phase diagram



## "Trajectories" from 3 fluid hydrodynamics



## The critical point: can we locate it?



## Strangeness Production in Au+Au / Pb+Pb



### Strangeness/pion ratios from central Au+Au (Pb+Pb) collisions



C. Blume for the NA49 collaboration, nucl-ex/0409008

## Experimental challenges

Central Au+Au collision at 25 AGeV: URQMD + GEANT4

160 p 400 π<sup>-</sup> 400 π<sup>+</sup> 44 K<sup>+</sup> 13 K<sup>-</sup>

- 10<sup>7</sup> Au+Au reactions/sec
  (beam intensities up to 10<sup>9</sup> ions/sec, 1 % interaction target)
- $\blacktriangleright$  determination of (displaced) vertices with high resolution ( $\approx 50~\mu\text{m}$ )
- identification of electrons and hadrons



- > Radiation hard Silicon (pixel/strip) Tracking System in a magnetic dipole field
- Electron detectors: RICH & TRD & ECAL: pion suppression better 10<sup>4</sup>
- Hadron identification: TOF-RPC
- > Measurement of photons,  $\pi$ ,  $\eta$ , and muons: electromagn. calorimeter (ECAL)
- High speed data acquisition and trigger system

#### Annual yields at RHIC II & LHC (from Tony Frawley RHIC Users mtg.)

• FAIR



- Phase Diagram
- EOS
- matter & constit. prop.

**Quark Matter** 

651 5153



- N-Hyperon Int.
- n-skin & beta matter
- n-star & Q-matter





 spectral functions (vector mesons)





### Nucleon-Nucleon / Meson



- SRC & PD • 3NF
- p (N) structure in-medium



## FAIR – Planned Experimental Facilities





## **Highest Intensity Precision Beams of Energetic Ions**

Fundamental Research into the microscopic structure of matter

> Creation of matter nucleosynthesis and the evolution of the Universe



Matter in extreme states and material studies & applications



Structure and fundamental properties of anti-matter



## Master Schedule



Based on Civil Construction Schedule







Workshops / White Papers: exploration of science opportunties



## Structure of FAIR for Preparatory Phase (MoU)



## Accelerator Physics and Key Technology / R&D for FAIR

High gradient, low frequency RF cavities

CR compressor cavity



Fast stochastic and electron cooling



Novel lattice/collimation design: Beam optics studies

control of stripping losses



Ultra high vacuum for intense beams

#### Desorption test-stand



Superconducting, fast ramping synchrotron magnets

SIS 100 dipole magnet



## **Strong EU support for FAIR related activities in FP6**



#### EU-FP6-CNI:

 ⇒ FAIR injector SIS18 intensity upgrade, HADES upgrade + R3Bmagnet
 EU-Support: 10,4 M€

#### **EU-FP6-Design Study:**

⇒ Secondary Beams (RIB and Antiprotons) EU-Support: 9 M€

EU-FP6-I3 programs ⇒ I3HadronPhysics: FAIR related EU-Support: 10,8 M€ ⇒ EURONS: FAIR related EU-Support: 2 M€