KVI RUG

Polarimetry for Deuteron EDM Search

M. da Silva e Silva, N.P.M. Brantjes, C.J.G.Onderwater, K. Jungmann Kernfysisch Versneller Instituut, Rijksuniversiteit Groningen, The Netherlands

Trapped Radioactive Isotopes: *µ*icro-Laboratories for Fundamental Physics

T/CP VIOLATION AND EDMs		
Symmetry Breaking	Few-body EDMs	Generic EDM experiment
Electric dipole moments (EDMs) break	° Contributions	[•] Beam and Spin preparation
both <i>Parity</i> and <i>Time reversal</i> symmetries	$d_{nuclear} = d \oplus d \oplus d$	Polarize : state selection using known technology
.s .s	nuclear n p interaction	Accelerate : LINAC or cyclotron

Measurements of n, p, ²H, ³He,... necessary

Sensitivities

Standard Model: strong CP violation $d_{p}(\overline{\theta}): d_{2_{H}}(\overline{\theta}): d_{3_{He}}(\overline{\theta}) \approx (3:1:-3) \times 10^{-16} \overline{\theta} \ [e \cdot cm]$ New Physics: Chromo EDMs (e.g.) $d_{n} = -0.01\tilde{d}_{d} + 0.49\tilde{d}_{u}$ $d_{2_{H}} = -4.67\tilde{d}_{d} + 5.22\tilde{d}_{u}$

DEUTERON \rightarrow **AN EXCELLENT CANDIDATE**

Interaction with E-field

INTERACTION WITH E-FIELD

Spin precession for a relativistic particle $\vec{\Omega} = \frac{e}{m} \left[a\vec{B} + \left(a - \frac{1}{\gamma^2 - 1} \right)\vec{v} \times \vec{E} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \vec{E} \right) \right]$ \vec{n} : electric dipole moment a : anomalous magnetic moment

The parasitic method

EDM causes a tilt ϕ in the spin precession plane and a change in frequency Ω

The only completed EDM experiment

The frozen spin method

Spin precession *not* depending on EDM is **removed using a radial** E-field $\approx aBc\beta\gamma^2$ **Cyclotron and spin frequencies match**

The resonance method

Modulate $E(t) = v(t) \times B$ at spin frequency

Synchrotron and spin frequencies match

THE EDM SIGNAL IS IN THE VERTICAL POLARIZATION COMPONENT

$$d_{\mu} < 2.8 \times 10^{-19} \ [e.cm]$$
 $d_{\mu}^{*} < 10^{-24} \ [e.cm]$ $d_{D}^{*} < 10^{-27} \ [e.cm]$ $d_{D}^{*} < 10^{-29} \ [e.cm]$ *projected

Systematics limited method Use β dependence to improve

Bailey et al., J. Phys. G : Nucl. Phys. 4, 345,1978 http://www.arxiv.org/abs/hep-ex/0407008. Suitable for particles with a small *anomalous* magnetic moment, such as the muon or ²H

Suitable for particles whose synchrotron and spin tunes can be brought to resonance $(a\gamma \sim 0, 1, 2, ...)$ such as ¹H,²H,³H,³He,...

F.J.M. Farley et al., A new method of measuring electric dipole moments in storage rings, Phys.Rev.Lett. 93 (2004) 052001 Y.K. Semertzidis et al., A New Method For A Sensitive Deuteron EDM Experiment, http://www.arxiv.org/abs/hep-ex/0308063 Yu.F. Orlov, W.M. Morse and Y.K. Semertzidis, *Resonance Method of EDM Measurements in Storage Rings*, Phys.Rev.Lett 96 (2006) 214802

POLARIMETRY

Nuclear Scattering ¹²C(d,d)¹²C

Statistical precision

τ_{n} : spin coherence time E*: effective electric field **P**₀: initial polarization N: number of particles

Parameters affected by the polarimeter

ε : detector efficiency A: analyzing power **τ: beam lifetime**

Maximize in design

Hogeschool van Amsterdam June 21, 2005

Concept

Slow extraction through Coulomb scattering in thin extraction target

High efficiency nuclear scattering in thick analyzing target with high sensitivity

Work in preparation Detailed analytic and tracking

simulations

Component Analysis

Design Report

Ed Stephenson (IUCF)