# Precision spectroscopy in electronic and muonic H and He<sup>+</sup>

A. ANTOGNINI, T.W. HÄNSCH, T. NEBEL, R. POHL

MPQ (Max-Planck-Institut für Quantenoptik), Garching, Germany

F. BIRABEN, P. INDELICATO, L. JULIEN, E. LEBIGOT, F. NEZ, C. SCHWOB

LKB (Laboratoire Kastler Brossel) – ENS – UPMC, Paris, France

F.D. AMARO, J.M.R. CARDOSO, L.M.P. FERNANDES, J.A.M. LOPES, C.M.B. MONTEIRO, J.M.F. DOS SANTOS, J.F.C.A. VELOSO

Universidade de Coimbra - Universidade de Aveiro, Portugal

A. GIESEN, K. SCHUHMANN IFSW (Institut für Strahlwerkzeuge), Universität Stuttgart, Germany

A. DAX, F. KOTTMANN, Y.-W. LIU, D. TAQQU Uni Tokyo, Japan – Uni Hsinchu, Taiwan – PSI Switzerland

#### One-loop self-energy in hydrogen: perturbative vs. all-order approach

#### Free particle and bound-state QED

Precision QED for free particles (e.g., g-2) is being calculated with an increasing number (several thousands) of complicated diagrams (up to the five-loop level). Bound-state QED deals with simpler diagrams (up to the two(three)-loop level), but the charged particles are bound rather than free, and thus the Coulomb exchange is not a small effect. Free QED involves only one small parameter  $\alpha$ , while bound-state QED needs at least three expansion parameters  $\alpha$ ,  $Z\alpha$  and m/M (perturbation theory):

- *α*, the power of which indicates the number of QED loops.
- $Z\alpha$  is the Coulomb strength. It represents the binding effect.  $\alpha$  and  $Z\alpha$  expansions behave quite differently. There is a number of contributions where we need to sum over an infinite number of Coulomb exchanges, like for the Bethe logarithm. If  $Z\alpha$  is not small (Uranium  $Z\alpha \approx 0.7$ ), there is strong coupling, and perturbation theory can not be applied. For  $Z\alpha \rightarrow 0$  there is a non–analytic behaviour of the perturbation theory. The result is the occurrence of numerous logarithms  $(\ln^{i} (1/Z\alpha)^{2})$ and large coefficients in the expansion.
- m/M is the recoil parameter. In the non-relativistic case the two-body system can be exactly solved by introducing the reduced mass of the system, but the separation of center-of-mass and relative motion can not be done in a relativistically covariant way. This complicates the treatment of boundstates fundamentally.

For high energy of the exchanged virtual photon, the Dirac-Coulomb propagator may be expanded as

$$\frac{1}{(m-\gamma)^0 V} = \frac{1}{\not(q-m)} + \frac{1}{\not(q-m)} \gamma^0 V \frac{1}{\not(q-m)} + \frac{1}{\not(q-m)} \gamma^0 V \frac{1}{\not(q-m)} \gamma^0 V \frac{1}{\not(q-m)} + \cdots \quad (V = \frac{Z\alpha}{r}, \mathbf{r} \sim (Z\alpha))$$

$$\Delta E_{SE}^{(1)} = m \frac{\alpha}{\pi} \frac{(Z\alpha)^4}{n^3} F_n(Z\alpha)$$

• Perturbative expansion of the Dirac-Coulomb propagator in 
$$(Z\alpha)$$

$$\begin{split} F_n &= A_{40} + A_{41} \ln{(Z\alpha)^{-2}} + (Z\alpha)A_{50} + (Z\alpha)^2 \left[A_{62}\ln^2{(Z\alpha)^{-2}} + A_{61}\ln{(Z\alpha)^{-2}} + G\right] \\ G &= A_{60} + (Z\alpha) \left[A_{71}\ln{(Z\alpha)^{-2}} + A_{70}\right] + (Z\alpha)^2 \left[A_{83}\ln^3{(Z\alpha)^{-2}} + A_{82}\ln^2{(Z\alpha)^{-2}} + A_{81}\ln{(Z\alpha)^{-2}} + A_{80}\right] \end{split}$$

The calculation of the corrections of relative order  $(Z\alpha)^2$  is highly non-trivial because the binding Coulomb fields enter in a nonperturbative way, and there is no closed-form expression for the Dirac-Coulomb propagator. For example, the separation of  $(Z\alpha)^2$  relative contributions involves hundreds of terms. The uncertainty related to truncation of the  $(Z\alpha)$  expansion is 28 kHz.

• All-order numerical treatment of the Dirac-Coulomb propagator leads to a self-energy with 0.8 Hz uncertainty. Both methods are in agreement.

#### Two-loop self-energy in hydrogen: perturbative vs. all-order approach



 $G_n = B_{40} + (Z\alpha)B_{50} + (Z\alpha)^2 \left[ B_{63}\ln^3 (Z\alpha)^{-2} + B_{62}\ln^2 (Z\alpha)^{-2} + B_{61}\ln (Z\alpha)^{-2} + G_{h,o} \right] + \cdots$ 

The expansion of the two-loop self-energy in powers of  $Z\alpha$  and  $\ln[(Z\alpha)^{-2}]$  leads to surprisingly large terms and is therefore considered a prototype for badly converging series. Bad convergence of the  $(Z\alpha)$  expansion and disagreement between the perturbative and nonperturbative approach require progress in this field, both from the theoretical and experimental side.



#### Helium

A very challenging experiment is underway at MPQ aiming to measure the 1S - 2S transition frequency in He<sup>+</sup>. A He<sup>+</sup> single ion is cooled, trapped and directly two-photon excited with a newly invented frequency comb in the XUV region ( $\lambda = 60 \text{ nm}$ ).

Since bound-state QED corrections to the energy levels scale like  $Z^{\geq 4}$ , spectroscopy on He<sup>+</sup> offers the possibility to test the interesting QED corrections  $\sim 16$  times better than in H.

| Contributions                                                                                | H(1S - 2S)                       | ${\rm He^{+}}(1S - 2S)$        |
|----------------------------------------------------------------------------------------------|----------------------------------|--------------------------------|
| $\Delta E_{\text{Dirac}} \approx \Delta E_{\text{Bohr}} = \frac{3}{4} Z^2 R_{\infty}$        | $2.5 \times 10^{12} \text{ kHz}$ | $1 \times 10^{12} \text{ kHz}$ |
| Uncertainty related to $R_{\infty}$                                                          | (16 kHz)                         | (65 kHz)                       |
| Near future uncertainty of $R_{\infty}$ (1S – 3S spectroscopy in H)                          | (~ 8 kHz)                        | (~ 30 kHz)                     |
| Radiative and recoil contributions (main contribution scales like $\mathbb{Z}^{3,7}$ )       | 7 126 785 kHz                    | 93 794 104 kHz                 |
| QED uncertainty given by the $B_{60}$ and $B_{7i}$ terms, scaling with $\mathbb{Z}^{\geq 6}$ | (3 kHz)                          | (185 kHz)                      |
| Uncalculated higher terms ( $C_{50}$ , recoil)                                               | (2 kHz)                          | (100 kHz)                      |
| Nuclear finite size: $\sim (Z\alpha)^4 m_r^3 R_{p/He}^2 \delta_{l0}$                         | 1 102 kHz                        | 62 005 kHz                     |
| Uncertainty using CODATA values                                                              | (44 kHz )                        | (369 kHz)                      |
| Near Future: $R_p$ ( $R_{He}$ ) from muonic hydrogen (helium) experiments                    | (2 kHz )                         | (40 kHz )                      |
| Calculated nuclear polarizability                                                            | -0.08 kHz                        | -28 kHz                        |
| Uncertainty                                                                                  | (0.02 kHz)                       | (6 kHz)                        |

As can be seen from the table He<sup>+</sup> is less sensitive to  $R_{\infty}$  and more sensitive to the problematic (( $Z\alpha$ )<sup>6</sup>) bound–state OED terms than H.

As in the case of H, the uncertainty resulting from the nuclear size term has to be reduced by an order of magnitude in order to compare QED predictions with the measurements. Measuring the 2S - 2P energy difference in  $\mu^4$ He<sup>+</sup> ions to 50 ppm will result in a determination of the <sup>4</sup>He nuclear radius to  $3 \times 10^{-4}$ , good enough to exploit the potential of the  $\text{He}^+(1S - 2S)$  spectroscopy experiment.

#### **Muonic Helium**

Spectroscopy on muonic He<sup>+</sup> offers the way to extract the nuclear radius with high precision. QED, recoil and nuclear structure corrections contribute to the muonic helium Lamb shift as

 $\Delta E_{2S-2P}(\mu^{4}\text{He}) = (1814.7(6) - 102.6\frac{2}{R_{\text{He}}^{2}}\text{[fm^{2}]}) \text{ meV} = 1814.7(6) - 289.6(1.7) = 1525.1(1.8) \text{ meV}$ 

A measurement of  $\Delta E_{2S-2P}(\mu^4 \text{He})$  with 50 ppm accuracy will lead to a determination of the He<sup>+</sup> nuclear radius 10 times better than present accuracy of muonic helium polarizability required 5% relati

### Hydrogen and muonic hydrogen

#### Energy levels and definition of Lamb shifts

The atomic energy levels are described by

$$E = \frac{1}{n^2} R_{\infty} \frac{m_r}{m} + L(\alpha, c, \frac{R_p}{m} \dots)$$

where  $R_{\infty}$  is the Rydberg constant,  $m_r$  the reduced mass of the system, m the electron mass,  $\alpha$  the fine structure constant,  $R_p$  the proton rms charge radius, and L the Lamb shift.

The Lamb shift is defined as any deviation of the energy level from the prediction of the Dirac (Schrödinger) equation caused by radiative (QED), recoil and nuclear structure corrections.

Note that in order to predict the hydrogen energy levels within bound-state QED, we need to determine, with proper accuracy, fundamental constants like  $R_{\infty}$ ,  $\alpha$ ,  $\hbar$ , m... and  $R_{p}$ .

## High precision spectroscopy in hydrogen

Several transition frequencies have been measured with high accuracy (e.g.,  $H(1S - 2S) \delta \nu / \nu \approx 10^{-14}$ ) in hydrogen and deuterium

$$\begin{split} \Delta E_{1S-2S} &= 0.75 \, R_\infty \frac{m_r}{m} - L_{1S} + L_{2S} \\ \Delta E_{2S-8S/D} &= 0.23 \, R_\infty \frac{m_r}{m} - L_{2S} + L_{8S/D} \\ & \dots \\ L_{nS} &= -\frac{1}{3} L_{1S} + \varepsilon_n \end{split} \right\} \Rightarrow \begin{cases} L_{1S}^{\exp} &= 8172.840(22) \, \text{MHz} \\ R_\infty &= -3289 \, 841 \, 960.360(22) \, \text{MHz} \end{cases}$$

and L and  $R_{\infty}$  have been extracted. To reach such a precision the lasers used to excite the transitions were referenced to an atomic Cs-clock which defines the second.

# Comparison of measured and calculated 1S Lamb shift in H, and the proton radius

$$\begin{array}{c} R_{\rm p} \\ \alpha, c, \hbar, m \dots \\ \text{bound-state QED} \end{array} \right\} \quad \Rightarrow \quad L_{1S}^{\rm th} = 8172.901(4)(51) \ \text{MHz} \qquad R_{\rm p} \ \text{from ${\rm e}$-$p scattering with $2\%$ accuracy} \\ L_{1S}^{\rm th} = 8172.901(4)(3) \ \text{MHz} \qquad R_{\rm p} \ \text{from ${\mu}$p Lamb shift with $10^{-3}$ accuracy} \end{array}$$

The comparison between theory and experiment is presently limited by the uncertainty of the proton radius to a level of  $6 \times 10^{-6}$ . A measurement of  $R_p$  by the muonic hydrogen Lamb shift experiment opens the way to check bound-state OED to a level of  $3 \times 10^{-1}$ 

# Muonic hydrogen Lamb shift experiment at PSI



An experiment using a new ultra-low energy muon beam (bottom) and a dedicated  $\lambda = 6 \ \mu m$  laser system (left) was set up at PSI, and first data were taken in Nov. 2003. The statistics were too low to determine the 2S - 2P resonance line. Next data taking is planned for 2007, with a thin-disk laser developed at IFSW Stuttgart, enhancing the event rate by a factor 20.



The  $\mu$ He experiment can be performed at PSI, with small changes of the setup presently used for the  $\mu$ p experiment. The  $\mu$ He experiment is significantly easier compared to muonic hydrogen since

|                               | $\mu$ i ie                      | $\mu_{ m P}$                      |                             |
|-------------------------------|---------------------------------|-----------------------------------|-----------------------------|
| • 2S lifetime                 | 1.4 $\mu$ s at 30 mbar He       | $1.0~\mu s$ at 1 mbar $H_2$       | shorter target              |
| • $2S$ population             | 2.5%                            | 1% longlived                      | -                           |
| • Two-photon $2S-1S$ decay    | measurable                      | non-measurable                    | monitoring of the $2S$ pop. |
| • $2P - 1S$ transition energy | 8.2 keV                         | 1.9 keV                           | detector less delicate      |
| • Laser pulse                 | E=5–10 mJ at $\lambda = 812$ nm | E=0.2 mJ at $\lambda = 6 \ \mu m$ |                             |

The laser light required for the  $\mu$ He experiment at 812 nm can be produced with the existing TiSa laser optically pumped by our thin-disk laser developed at IFSW Stuttgart.

# Conclusion

- Bound-state QED involves a rich spectrum of problems, and deserves to be tested, particularly because of the lack of well established universal prescriptions appropriate for the relativistic two-body problem in general. Combining precision spectroscopy in H and He<sup>+</sup> will lead to sensitive tests of the perturbative and nonperturbative methods used for bound-state QED. Determination of the p and <sup>4</sup>He nuclear sizes by measuring muonic Lamb shifts is absolutely essential.
- Bound-state QED plays an important role in the determination of fundamental constants, like  $R_\infty$  $(R_{\infty} = \alpha^2 m c/2\hbar)$ , the electron mass m (bound-state g-factor of hydrogenlike ions and antiprotonic He),  $m_{\mu}/m$ and hence  $\mu_{\mu}/\mu_{p}$  (hyperfine splitting in muonium),  $\alpha$  (bound–state g-factor experiments if the theory can be carried out to the  $10^{-12}$  level), m/M where M is the proton mass (hydrogen energy levels).
- H, D, <sup>3</sup>He, <sup>4</sup>He nuclear radii can be determined by spectroscopy with the same apparatus used for the µp Lamb shift. This is of relevance for precision spectroscopy and nuclear physics.